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Physical meaning of the time-correlation length obtained in a computer simulation
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A comparison is made of three statistical methods of determining the autocorrelation coefficients and
correlation length in a time-data series obtained by a computer simulation. Three points of state were
chosen where the fluctuations and correlations play different roles: in the liquid, in the solid near melt-
ing, and in the melting zone. Taking account of the physical meaning of the results, it is found that there
is always a limiting value of the lag at which the series must be cut off.
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I. INTRODUCTION

A common question that arises when a mathematical
physics topic is to be treated is how to choose the most
suitable mathematical method for solving or understand-
ing the physical problem. Once chosen, one must take
into account whether the method can be applied fully or
with limitations given by physical reasoning. For exam-
ple, in statistical simulations there is a rule which shows
directly the nature of the n computed data points: if the
variance of a calculated physical property x is # times the
variance of the mean X, the data are uncorrelated, if not,
they are correlated. The strength of the correlation will
be reflected in how different those variances are.
Mathematically [1]
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The problem arises in the way in which the autocorre-
lation coefficient (ACC) at lag k, 7, is defined and there-
fore which approximation is to be used for the correlating
length (CL), 7, of the series, the summation in Eq. (1).
The approximation should be justifiable physically (for
example, there should not really be any infinite lag corre-
lations).

The statistical methods used are briefly described in
Sec. II, Sec. III presents the results for the chosen system,
with the conclusions in Sec. IV.

II. THE STATISTICAL METHODS

We shall consider the common situation in which # is a
finite number of points and K is a limit which separates
the correlated (7,50 for kK <K) and uncorrelated (r, =0
for k > K) data points. Our ACC and CL are given, re-
spectively, by
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Straatsma, Berendsen, and Stam [2] consider the prac-
tical application of the case n >>K when the k /n term in
Egs. (3) and (4) is neglected and the new correlation
length 7g reduces to the summation of r,, instead of ry.

In a recent publication Dietrich and Dette [3] perform
the summation for 7,, and 7 from k =1 to n — 1 instead
of assuming the existence of a limiting lag K. They found
that the resulting 7 varies strongly while 7,, is constant
(—0.5). They therefore use a different expression for r;
in order to give a better estimate statistically of the corre-
lation [4]
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where X; and X, are the means of the first
n—k and last k observations of the series
XiseeesXy—g>Xp—k+15---5%X,, respectively, and the

denominators are proportional to the respective standard
deviations, o, and o,.

According to the case, this estimate may be modified to
be a function of the mean of the whole series, giving
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If the data are uncorrelated, X; =X, =X so that Eq. (5)
reduces to Eq (6), and in addition, as var(x;)=oc2, and
o?=03+03, Eq. (6) becomes Eq. (4). Therefore
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The expression corresponding to Eq. (3) for the CL’s for
Egs. (5) and (6) is
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when K in Eq. (3) takes the value n —1. If the data are
correlated, the ACC and the CL should be different and
the magnitude of the difference will depend on the
strength of the correlation.

The Dietrich-Dette assumption implies that the corre-
lation has a long-range tail, the points being correlated
however large n is.

We will show from our simulation data that this hy-
pothesis, which is only justified mathematically, leads to
results not nearly as good as those which are based on
physical arguments of a limit to long-term correlations.

III. RESULTS

Computer simulations were performed for a two-
dimensional Lennard-Jones (12-6) fluid using the Tox-
vaerd algorithm [5] and the usual molecular-dynamics
simulation of the microcanonical ensemble. Three points
of state were chosen: the first in the stable liquid far from
any transition, where the fluctuations of the thermo-
dynamic variables are very small and hence one may
presume that the data are uncorrelated; the second, in the
solid near melting, where spontaneous fluctuations drive
the system back and forth between two points of state [6],
and finite-range correlations are expected; the third, in
the melting zone, with a long-term fluctuation [7], where
the correlation is expected to be long range.

The study was focused on comparing our method with
the two proposed by Dietrich and Dette [3]. For simpli-
city, the method of Straatsma, Berendsen, and Stam [2]
was omitted because it is a particular case of ours. Fur-
ther details of the computer simulation and final results
can be found in Refs. [6] and [7]. For all the cases, the
temperature was the thermodynamic variable chosen to
study the correlations. Each temperature value was tak-
en as a subaverage over 800A, the time step being
h =0.005(mo?/¢e)!/?, where m, o, and € are the units of
mass, length, and energy in the Lennard-Jones model.

The correlations were calculated without restricting k,
i.e., from k =1 to n —1, as in Ref. [3]. Figures 1, 3, and
5 show the ACC’s r; [Eq. 4)], 7, [Eq. (5)], and 7, [Eq.
(6)], for the temperature in the liquid, solid, and melting,
respectively, and Figs. 2, 4, and 6 show the corresponding
CL’s 74, [Eq. (3)], 7, and 7 [Eq. (8)] for the same systems.

From Fig. 1 one can see how, from the beginning, the
fluctuations of the ACC are regular, with peaks above
and below the zero value, meaning that the experimental
data can be considered uncorrelated as was to be expect-
ed in principle for the liquid system. The ACC’s ob-
tained from the three methods are equal, verifying Eq.
(7), but only up to a lag k =25 (half the total points).
Beyond this value, r, converges towards zero whereas the
fluctuations of 7, and 7, increase, that corresponding to
7, being considerably greater. The behavior of the three
CL’s is quite similar (Fig. 2): they are zero for the first
few values of k and then descend to the value —0.5. This
constant value is the limit of the series in Eq. (3) when
k =n —1, as deduced mathematically in Ref. [3]. But it
is also the limit for the series in Eq. (8) if the data are un-
correlated, verifying the identities of Eq. (9) with the
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FIG. 1. Autocorrelation coefficients r;, #, and 7, for the
liquid system (kT /e=1.0 and po?=0.7937) vs lag k.

same limitation k =25 as for Eq. (7). Because of the
clearness of the results and the similarity of the curves, it
was not necessary to run the system any longer.

The results for the correlation in the solid near melting
are quite different. It was found that the system spontane-
ously melts and resolidifies twice, at 10 0004 and 40 000A.
In the solid the ACC’s (Fig. 3) start from a maximum
value and fall sharply within the few first values of k,
with no difference between the three methods. Then
there appears a second smooth maximum for k =14,
where the methods begin to separate. This maximum
corresponds to the first time at which the solid system
melts and resolidifies. After that, the methods behave
differently: 7; remains negative and very close to zero
with small fluctuations, 7, take positive and negative
values with large fluctuations, and 7, breaks down, giving
meaningless large negative values. The second time the
system melts, at about k =55, is reflected by the higher
peaks in the fluctuations for all three methods but none
of them manifest any true correlation. The behavior of
the CL’s shown in Fig. 4 is very clear: 7,, and 7 reach a
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FIG. 2. Correlation lengths 7,,, ¥, and 7 vs lag k in the liquid
system.
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FIG. 3. The same as Fig. 1 for the solid system (k7T /e=1.0
and pa?=0.9048).

maximum at about k =23, the value at which r; and 7,
pass through zero in Fig. 3, and then fall becoming nega-
tive towards the end, 7 being more negative than 7,,.
The other CL 7 behaves differently, reaching a higher and
later maximum and maintaining a plateau at this value.
The correlations for the melted system have yet anoth-
er kind of behavior. In the melting zone, the time evolu-
tion of the temperature of the system shows large period-
ic fluctuations. The ACC’s for this system (Fig. 5) reflect
this with all three methods behaving alike until kK =40
(1/3.5 of the total number of points). There is then a
second part until £ =80 during which they show a simi-
lar behavior with slightly different values. But from this
point to the end, the fluctuations of r; tend smoothly to
zero, whereas the fluctuations of 7, and 7, around zero
become much larger, those corresponding to 7, being
greater as was also the case in the liquid system. The
CL’s for this system are shown in Fig. 6. The minimum
at around k =20 corresponds to where the ACC’s be-
come negative in Fig. 5. The behavior of the three
methods is similar until kK =75, after which 7 climbs to a
positive plateau at about 2.0. The other two CL’s stay
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FIG. 4. The same as Fig. 2 for the solid system.
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FIG. 5. The same as Fig.
(kT /e=0.7 and po?=0.84).

1 for the melting system

very close to each other, 7 approaching zero and 7,

—0.5, as was expected.
IV. CONCLUSIONS

The three physical cases studied clearly contradict
Dietrich and Dette’s hypothesis that there exists no max-
imum lag k. When there is apparently no maximum in
some given case, this is not because the data are all of
them correlated, but because they are uncorrelated from
the beginning (hence K =0) as was seen in the liquid
(Figs. 1 and 2). When the system has regular fluctua-
tions, but with some spontaneous jumps, as in the solid,
all the three methods show a short-range correlation be-
fore the method proposed for 7, breaks down (Fig. 3) and
its large fluctuations give rise to a large fictitious per-
manent correlation length (Fig. 4). When the system
shows oscillating fluctuations, as in the melting zone,
there exist long trend correlations which, for 7,, and 7,
die out far before reaching the last value of kK =n —1
(Figs. 5 and 6), and for the 7 reach a plateau of about 2.0
denoting again a smaller, but false, correlation.
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FIG. 6. The same as Fig. 2 for the melting system.
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In the method proposed by Dietrich and Dette, one
fact is clear: beyond a certain value of k (depending on
the system), the fluctuations in the ACC become larger as
k increases and may therefore give not only a false value
for the CL, but a fictitious permanent correlation in the
data. The explanation is to be found in the way in which
the summations in Egs. (5), (6), and (8) are carried out.
For k =1 the ACC’s have n —1 terms and the CL one
term; for k =2, the ACC’s have n —2 terms and the CL
two terms, etc. That is, for each unit increase in k, the
number of terms which determine the ACC’s decrease by
one. The corresponding statistical noise thus also in-
creases. When finally k =n — 1, there is only one term in
the ACC (and n —1 in the CL) which means physically

that the first experimental value is correlated with the
last, omitting the other n» —1 points, independently of
how large n is. The CL’s, which are the sum of the
ACC’s, collect all these noises and can be completely
masked. Therefore one must eliminate the noise in the
ACC and CL by choosing an appropriate cutoff in the lag
k. This can be done by simple observation of a plot of the
ACC or CL versus lag k, as in Figs. 1-6.
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